Search results for " proton conductor"

showing 10 items of 11 documents

Local environment of Barium, Cerium and Yttrium in BaCe1−xYxO3−δ ceramic protonic conductors

2007

Abstract Y-doped barium cerate protonic conductors with composition BaCe 1 −  x Y x O 3 −  δ ( x  = 0.02, 0.1, 0.2, 0.3) have been synthesized by sol–gel route, giving by X-ray diffraction tests a homogeneous crystalline phase. A commercial sample BaCe 0.8 Y 0.2 O 3 −  δ produced by combustion spray pyrolysis was also provided for comparison aim. The local structure around the cations was studied by X-ray absorption spectroscopy at the K-edges of Ba, Ce and Y. It is demonstrated that the insertion of yttrium in the site of cerium produces a remarkable local distortion of the dopant first-shell octahedral environment that affects also the next coordination shells by a static disorder increas…

Materials scienceExtended X-ray absorption fine structureDopantAbsorption spectroscopyBarium cerateInorganic chemistryEXAFS XRD proton conductor perovskite barium cerateOxidechemistry.chemical_elementBariumGeneral ChemistryYttriumPerovskiteCondensed Matter PhysicsProtonic conductorEXAFSchemistry.chemical_compoundCeriumchemistryPhysical chemistryGeneral Materials ScienceY-dopingPerovskite (structure)Solid State Ionics
researchProduct

Dopants and defects: local structure and dynamics in barium cerates and zirconates

2010

In this paper we present an overview of state-of-the-art EXAFS measurements and data analysis on Ba, Ce, Zr, Y, In and Gd local environments in Y:BaCeO3, In:BaCeO3, Gd:BaCeO3, Y:BaZrO3, and In:BaZrO3, at different temperatures, hydration degrees and doping levels. This approach allows to reach unprecedented insights on the peculiar role of the dopant, and its interactions with the other lattice defects. In particular, we evidence that each different dopant shows unique behavior, depending mainly on its electronic structure, and that the usual criterion of ionic radius matching is not useful to outline an effective doping strategy of proton-conducting perovskites. As what concerns the struct…

Materials scienceIonic radiusExtended X-ray absorption fine structureDopantInorganic chemistryDopingEXAFS perovskite proton conductorGeneral ChemistryElectronic structureConductivityCondensed Matter PhysicsChemical physicsGeneral Materials ScienceProton conductorPerovskite (structure)EXAFS perovskite proton conductor barium zirconate barium cerate
researchProduct

Dopant-Host oxide interactions and proton mobility in Gd:BaCeO3

2009

The local structure of Gd:BaCeO3 at different dopant concentrations (2-20%) was studied by X-ray absorption spectroscopy. The EXAFS analysis shows that the environment of the regular Ba2+ and Ce4+ cations is to a limited extent affected by doping. The local structure of gadolinium shows an expansion of the first coordination shell of oxygens, consistent with the ionic radius of Gd3+, but a contraction of the next neighboring shells of cations. In particular, the Ba2+ second neighbors get closer to the dopant, which can be originated by the effective negative charge sharply localized on the dopant. Comparison between EXAFS data of dry and hydrated compounds confirms this interpretation, show…

Ionic radiusDopantAbsorption spectroscopyProtonExtended X-ray absorption fine structureGeneral Chemical EngineeringGadoliniumDopingAnalytical chemistrychemistry.chemical_elementEXAFS proton conductor perovskite barium cerateGeneral ChemistryYttriumCrystallographychemistryMaterials Chemistry
researchProduct

Cs0.86(NH41.14SO4Te(OH)6 in porous anodic alumina for micro fuel cell applications.

2011

Abstract Cs0.86(NH4)1.14SO4Te(OH)6 supported by anodic alumina membranes (AAMs) has been characterized for the first time in H2/O2 fuel cell. The fabricated membrane electrode assemblies are able to produce peak power densities in the range 15–30 mW cm−2 under mild conditions (room temperature, low humidity and low Pt loading) and show an increased durability with cycling with respect to previous results obtained with AAM-based fuel cell. The physico-chemical characterization of the electrolytes has been carried out through X-ray diffractometry, scanning electron microscopy and micro-raman analysis. An estimation of the composite membranes conductance under fuel cell operation has been carr…

Thin film fuel cellScanning electron microscopeChemistryGeneral Chemical EngineeringInorganic chemistryConductanceElectrolytePorous alumina fuel cellCesium ammonium sulphate tellurateAnodeMembraneSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringElectrodeComposite proton conductors Porous alumina fuel cell Thin film fuel cell Cesium ammonium sulphate tellurateElectrochemistryComposite proton conductorThin filmPorosity
researchProduct

Local structure of gallate proton conductors

2009

Lanthanum barium gallate proton conductors are based on disconnected GaO4 groups. The insertion of hydroxyls in the LaBaGaO4 network proceeds through self-doping with Ba2+, consequent O2- vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO4 oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO4 tetrahedra retain their size throughout the whole series; (b) the GaO4 tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall s…

HistoryEXAFS gallate XRD proton conductorChemistryHydrogen bondchemistry.chemical_elementGallateCrystal structureComputer Science ApplicationsEducationCrystallographyChemical bondVacancy defectX-ray crystallographyLanthanumProton conductor
researchProduct

Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−ı) at intermediate temperatures.

2009

International audience; The perovskite BaCe(0.9−x)ZrxY0.1O(3−ı) is prepared by solid-state reaction at 1400 ◦C and sintering at 1700 ◦C. It is characterised using X-ray diffraction, Raman spectroscopy and electrical measurements. A distortion fromthe cubic structure at roomtemperature is noticeable in the Raman spectra for 0.2 < x < 0.8, but not in the X-ray diffraction patterns. This work points out the rhombohedral nature of this distortion. Phase transitions are studied up to 600 ◦C. The direct current conductivity is measured as a function of oxygen partial pressure, and at a water vapour partial pressure of 0.015 atm. The total conductivity is resolved into an ionic and a p-type compon…

High temperature proton conductorAnalytical chemistryEnergy Engineering and Power TechnologyMineralogy02 engineering and technologyConductivity010402 general chemistry01 natural sciencessymbols.namesakeIonic conductivityProton transportIonic conductivityElectrical measurementsBarium zirconateElectrical and Electronic EngineeringPhysical and Theoretical ChemistryProton conductorPerovskite (structure)Renewable Energy Sustainability and the EnvironmentChemistryBarium ceratePartial pressure021001 nanoscience & nanotechnology0104 chemical sciencesElectronic conductivityPhase transitionssymbols0210 nano-technologyRaman spectroscopy
researchProduct

Advances in Anodic Alumina Membranes-based fuel cell: CsH2PO4 pore-filler as proton conductor at room temperature

2009

Abstract Anodic alumina membranes (AAM) filled with cesium hydrogen phosphate proton conductor have been tested as inorganic composite electrolyte for hydrogen–oxygen thin film (≤50 μm) fuel cell (TFFC) working at low temperatures (25 °C), low humidity ( T gas  = 25 °C) and low Pt loading (1 mg cm −2 ). Single module TFFC delivering a peak power of around 15–27 mW cm −2 , with open circuit voltage (OCV) of about 0.9 V and short circuit current density in the range 80–160 mA cm −2 have been fabricated. At variance with pure solid acid electrolytes showing reproducibility problems due to the scarce mechanical resistance, the presence of porous alumina support allowed to replicate similar fuel…

Renewable Energy Sustainability and the EnvironmentChemistryOpen-circuit voltageAnodic alumina membranes Cesium hydrogen phosphate Composite proton conductors Pore filling Thin film fuel cellAnalytical chemistryEnergy Engineering and Power TechnologyElectrolyteElectrochemistryDielectric spectroscopySettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringDifferential thermal analysisElectrical and Electronic EngineeringPhysical and Theoretical ChemistryThin filmShort circuitCesium hydrogen phosphate Anodic alumina membranes Pore filling Composite proton conductors Thin film fuel cellProton conductor
researchProduct

Toward a new hybrid proton conductor: lanthanum niobate layered perovskites as a source of tailorable surfaces

2014

The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among inorganic oxides, the ion-exchangeable layered perovskites [1], materials composed by perovskite-like slabs and intercalated cations, stimulated authors’ interest in reason of some encouraging electronic and reactive properties. In particular it is well known that the interlayer surface of such materials in their protonated form can be easily functionalized with organic groups (such as alcohols [2-3] or organophosphonic acids [4]) thus allowing the production of stable hybrid materials with new electronic and react…

Layered perovskites DFT hybrid proton conductor
researchProduct

Nanoscale membrane electrode assemblies based on porous anodic alumina for hydrogen–oxygen fuel cell

2007

In this paper, we demonstrate that nanoscale membrane electrode assemblies, functioning in a H 2/O 2 fuel cell, can be fabricated by impregnation of anodic alumina porous membranes with Nafion® and phosphotungstic acid. Porous anodic alumina is potentially a promising material for thin-film micro power sources because of its ability to be manipulated in micro-machining operations. Alumina membranes (Whatman, 50 μm thick, and pore diameters of 200 nm) impregnated with the proton conductor were characterized by means of scanning electron microscopy, X-ray diffraction, and thermal analysis. The electrochemical characterization of the membrane electrode assemblies was carried out by recording t…

Materials scienceHydrogenAnalytical chemistrychemistry.chemical_elementFuel cells Protons Intermediate temperatureCondensed Matter PhysicsElectrochemistryAnodechemistry.chemical_compoundMembranechemistryChemical engineeringElectrodeElectrochemistryGeneral Materials ScienceComposite proton conductors Hydrogen-oxygen fuel cell Porous anodic aluminaPhosphotungstic acidElectrical and Electronic EngineeringPolarization (electrochemistry)Proton conductorJournal of Solid State Electrochemistry
researchProduct

Structural analysis, phase stability and electrochemical characterization of Nb doped BaCe0.9Y0.1O3−x electrolyte for IT-SOFCs

2012

Abstract To improve the chemical stability of high temperature proton conductors based on barium cerate, electrolyte powders doped with different amounts of niobium were synthesized by the citrate–nitrate auto-combustion method. Pure single phases of BaCe 0.9− x Nb x Y 0.1 O 3− x (BCYN, 0.03 ≤  x  ≤ 0.12) were obtained by thermal treatment at 1000 °C. Sintering at 1450 °C for 10 h produced dense pellets. X-ray absorption spectroscopy allowed to define the dopant ion insertion site and the co-dopant valency. Treatments in pure CO 2 atmosphere at 700 °C for 3 h and subsequent XRD analysis were carried out to probe the chemical stability of the produced electrolytes. The influence of the prese…

exafMaterials scienceHigh temperature proton conductors (HTPCs)Absorption spectroscopyDopantNb-dopingRenewable Energy Sustainability and the EnvironmentBarium ceratesofcSettore ING-IND/22 - Scienza e Tecnologia dei MaterialiStructural analysiSettore CHIM/07 - Fondamenti Chimici delle TecnologieAnalytical chemistryEnergy Engineering and Power TechnologyElectrolyteElectrochemical performancefuel cellsHigh temperature proton conductors (HTPCs) Barium cerates Nb-doping Structural analysis Electrochemical performanceConductivityAtmospheric temperature rangeDielectric spectroscopyChemical stabilityElectrical and Electronic EngineeringPhysical and Theoretical ChemistryPolarization (electrochemistry)
researchProduct